
The Changes of Runoff with DEM Resolution Variations
Author(s) -
Elvi Roza Syofyan,
Bambang Istijono,
Amrizal Saidi,
Revalin Herdianto
Publication year - 2020
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.f8511.038620
Subject(s) - hydrology (agriculture) , surface runoff , digital elevation model , environmental science , drainage basin , watershed , tributary , flash flood , land cover , catchment area , discharge , flood myth , remote sensing , land use , geography , geology , cartography , ecology , civil engineering , geotechnical engineering , archaeology , machine learning , computer science , engineering , biology
Currently there has been a research gap in providing sufficient and reliable data for the estimation of surface runoff from ungauged catchment in Batang Kuranji watershed, City of Padang, West Sumatera, Indonesia. The need for such data arose from the fact that land cover changes occur rapidly in the past 20 years, and flash flood and river degradation have been experienced at an alarming scale. However, due to lack of discharge data from upstream catchment, modelling catchment response to the effect of land use changes is hampered. Field measurement is difficult due to accessibility to river tributaries in the upstream catchment. Therefore, the use of digital satellite images and digital elevation model is studied with various DEM (Digital Elevation Model) resolutions for the first time in this catchment. This catchment is situated from 95 to 1858 m above sea level with an annual rainfall of 3440 mm. This watershed is classified as steep with a watershed that has a slope of more than 40% reaching 37.01% of the entire Kuranji watershed area. This study used 30 m and 8 m DEM. Secondary data were gathered from satellite images such as MODIS (MODerate resolution Imaging Spectroradiometer) Land Use. Precipitation data were gathered from three rain gauging stations in or nearby the catchment. Stream geometry data were obtained from the Provincial Office for River Management. Annual discharge and 100-year discharge are calculated using rainfall data for the past 20 years. Runoff discharge was calculated using rational method and SCS (Soil Conservation Services) method. Overall, computed discharge decreases as DEM resolution decreases with percentage varies between 0.98% to 1.76%. The biggest difference between DEM of 30 m and 8 m was shown by the Rational method. However, the difference between years is inconsistent with methods used with no significant pattern. Using the rational method, the biggest difference was by 18.73 m3/s, making up 1.76%. With SCS-CN, however, the biggest difference was 14 m3/s or 1.32% and the smallest was 0.98%. Validation with field measurement suggests that the 8-m DEM varies only 0.16% with actual discharge. Therefore, in the Kuranji catchment, the SCS method coupled with 8-m DEM was found to be accurate for the estimation of surface runoff.