
Finger Vein Based Authentication using Deep Learning Techniques
Author(s) -
Manjunatha V,
V Udayarani,
Chetana Hegde
Publication year - 2020
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.e6890.018520
Subject(s) - computer science , biometrics , convolutional neural network , artificial intelligence , deep learning , authentication (law) , transfer of learning , pattern recognition (psychology) , machine learning , data mining , computer security
Security is one of the major concerns of current times. Biometric based methods are found to be more reliable and accurate in authenticating an individual. Hand-based biometric traits are proved to be easily accessible during data collection. Collecting, storing and processing biometric trait images of all the employees is always a challenge for larger organizations. Deep learning techniques come to rescue from such situations. In this paper, we propose a novel approach for authentication using finger-vein images. We use basic convolutional neural network (CNN) with transfer learning. The model has been pre-trained on various types of images available on ImageNet database through ResNet – 50 architecture. This pre-trained model has been then run through CNN model with appropriate number of hidden layers and activation functions. The optimizers and loss functions are used to achieve appropriate classification among the images. The simulation results of proposed model has shown 99.06% of accuracy in classifying an individual.