Open Access
Template Based Pose and Illumination Invariant Face Recognition
Author(s) -
A. T.,
T. Venugopal
Publication year - 2020
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.e6161.018520
Subject(s) - artificial intelligence , computer vision , gabor wavelet , invariant (physics) , computer science , facial recognition system , pattern recognition (psychology) , template , face (sociological concept) , phase congruency , similarity (geometry) , feature extraction , image (mathematics) , mathematics , wavelet , wavelet transform , discrete wavelet transform , social science , sociology , mathematical physics , programming language
This article presents a method “Template based pose and illumination invariant face recognition”. We know that pose and Illumination are important variants where we cannot find proper face images for a given query image. As per the literature, previous methods are also not accurately calculating the pose and Illumination variants of a person face image. So we concentrated on pose and Illumination. Our System firstly calculates the face inclination or the pose of the head of a person with various mathematical methods. Then Our System removes the Illumination from the image using a Gabor phase based illumination invariant extraction strategy. In this strategy, the system normalizes changing light on face images, which can decrease the impact of fluctuating Illumination somewhat. Furthermore, a lot of 2D genuine Gabor wavelet with various orientations is utilized for image change, and numerous Gabor coefficients are consolidated into one entire in thinking about spectrum and phase. Finally, the light invariant is acquired by separating the phase feature from the consolidated coefficients. Then after that, the obtained Pose and illumination invariant images are convolved with Gabor filters to obtain Gabor images. Then templates will be extracted from these Gabor images and one template average is generated. Then similarity measure will be performed between query image template average and database images template averages. Finally the most similar images will be displayed to the user. Exploratory results on PubFig database, Yale B and CMU PIE face databases show that our technique got a critical improvement over other related strategies for face recognition under enormous pose and light variation conditions.