
Brain Tumor Classification by EGSO Based RBFNN Classifier
Author(s) -
R. Rajesh,
Akey Sungheetha,
Jemal Nuradis
Publication year - 2020
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.e6073.018520
Subject(s) - classifier (uml) , computer science , artificial intelligence , pattern recognition (psychology) , categorization , artificial neural network , radial basis function , mistake , brain tumor , machine learning , pathology , medicine , political science , law
Tumor classifier is modelled employing a proposed Enhanced Group Search Optimizer based Radial Basis Function Neural Network model is applied in this research contribution to acquire the ideal instances from the developed VOI instance an as well EGSO is utilized to optimize the weight values of the Radial Basis Function Network classifier by limiting the mean square mistake. The anticipated EGSO based RBFNN classifier brings better characterization precision and accomplished insignificant error with quicker process. The simulation results computed prove the effectiveness of the RBFNN classifier to be better in comparison with the other proposed classifiers in this thesis and that available in the literature. The proposed pattern evaluation technique presents an automatic cancer categorization procedure thru the ultimate facets which fantastic characterizes MRI brain image is benign and malignant cancers. The planned method may perhaps stretch to categorize exceptional classes of tumor (eg. Meningioma, glioma etc.,) and depth of malignancy.