
Mechanical Strength Properties of Geo Polymer Concrete incorporating Quarry Rock Dust and Recycled Coarse Aggregate
Author(s) -
Dr.S. Kavipriya*
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d9217.118419
Subject(s) - aggregate (composite) , portland cement , fly ash , cement , demolition , demolition waste , environmental science , waste management , pollution , compressive strength , materials science , civil engineering , engineering , metallurgy , composite material , biology , ecology
Utilization of waste materials in concrete are increasing day by day. Ingredient replacements in concrete using waste materials are one of such threads which bind nature and concrete in a greener way to provide a better environment for the future. Reduction in environmental pollution, effective usage of waste management, the economic factor and quality of concrete are the predominant aspects by which the replacement materials are chosen.[1] Geopolymer Concrete has emerged as one of the possible alternatives to OPC, since 100% of fly ash is used instead of Portland Cement.. In this present study, the prime material which is used as the source material is fly-ash (ASTMC618) which completely replaces cement..Also fine aggregate has become very expensive and scarcity, quarry rock dust have been replaced for fine aggregate. Almost all the demolition and construction waste have been dumped without any usage which ultimately results in pollution.[2] This prime factor is considered to reutilize recycled coarse aggregate instead of coarse aggregate . A greener aided with natural friendly claim can be made only with the usage of the waste materials. To find the better combination mix, the GPC is categorized into four types as GPC-1, GPC-2, GPC-3 and GPC-4. In all the above combination of mixes fly ash is used as prime source material whereas QRD and RCA are replaced with different combinations. Thus this paper, particularly focuses on the effect of replacement of waste materials in combination of different mixes such as FA+CA, QRD+CA, FA+RCA, and QRD+RCA in GPC. The casted specimens are cured at ambient temperature and after three days of rest period, the casted specimens are tested to determine its mechanical strength properties using standard methodology.