
Pore Pressure Prediction using Well-Logging Data in the West Baram Delta, Offshore Sarawak Basin, Malaysia
Author(s) -
Dejen Teklu Asfha*,
Haylay Tsegab,
Wan Ismail Wan Yusoff
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d9050.118419
Subject(s) - overpressure , pore water pressure , well logging , geology , drilling , petrophysics , oil shale , compaction , petroleum engineering , geotechnical engineering , porosity , materials science , paleontology , physics , metallurgy , thermodynamics
Well-predicted pore pressure is vital throughout the lifetime of an oil and gas field starting from exploration to the production stage. Here, we studied a mature field where enhanced oil recovery is of high interest and pore pressure data is crucial. Moreover, the top of the overpressure zone in west Baram Delta starts at different depths. Hence, valid pore pressure prediction prior to drilling is a prerequisite for reducing drilling risks, increasing efficient reservoir modeling and optimizing costs. Petrophysical logs such as gamma-ray, density logs, and sonic transit time were used for pore pressure prediction in the studied field. Density logs were used to predict the overburden pressure, whereas sonic transit time, and gamma-ray logs were utilized to develop observed shale compaction trend line (OSCTL) and to establish a normal compaction trend line (NCTL). Pore pressure was predicted from a locally observed shale compaction trend line of 6 wells using Eaton’s and Miller's methods. The predicted pore pressure using Eaton’s DT method with Eaton’s exponent 3 showed a better matching with the measured pressure acquired from the repeat formation test (RFT). Hence, Eaton’s DT method with Eaton exponent 3 could be applied to predict pore pressure for drilling sites in the study area and vicinity fields with similar geological settings.