
Behavior of Geo-Polymer Concrete by using Fly Ash and GGBS
Author(s) -
K. Madhan Gopal,
Dr.G. Sreenivasulu,
Dr.C. Sashidhar,
Desh Raj
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d9017.118419
Subject(s) - ground granulated blast furnace slag , fly ash , portland cement , sodium hydroxide , sodium silicate , geopolymer , compressive strength , curing (chemistry) , materials science , geopolymer cement , waste management , contamination , cement , pulp and paper industry , chemical engineering , environmental science , composite material , engineering , ecology , biology
Today the Serious issue, the world is confronting is the ecological contamination. In the development business primarily the generation of Portland concrete will causes the emanation of toxins which brings about high ecological contamination. But as we all known that Cement is the most consumed product in the world.And, 7% of the global carbon dioxide is going to be emitted by this process. Thus, we can diminish the contamination impact on condition, by expanding the utilization of modern side-effects in our development industry. Subsequently, Geopolymer concrete (GPC) is a unique kind of more eco-friendlier solid option in contrast to Ordinary Portland Cement (OPC) concrete. The main aim of this project is to study of effect of class F fly ash (FA) and ground granulated blast furnace slag (GGBS) of geopolymer concrete (GPC) mechanical properties at different replacement levels (MIX-1: FA100%-GGBS0%,MIX-2: FA75%-GGBS25%, MIX-3: FA50%-GGBS50%, MIX-4: FA25%-GGBS75%,MIX-5: FA0%-GGBS100%) utilizing Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) arrangements as an antacid activators.By considering diverse molaritys of sodium hydroxide asan alkaline activators.By considering different molaritys of sodium hydroxide as 0M,5M & 10M.And the Specimens were casted and cured for different curing periods at ambient room temperature to decide the GPC mechanical properties viz. compressive, split tractable and flexural quality. Test outcomes shows that so an expansion in GGBS substitution it will improve the mechanical properties of GPC at all ages at surrounding room temperature.