z-logo
open-access-imgOpen Access
Crashworthiness Characteristics of Multi-Cell Tubular Structures Subjected To Axial Impact
Author(s) -
A. Praveen Kumar,
Lalitha Sankar,
D. Maneiah,
B. Raju
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d8325.118419
Subject(s) - crashworthiness , deformation (meteorology) , structural engineering , tube (container) , finite element method , materials science , crash , automotive industry , dissipation , impact energy , composite material , engineering , mechanical engineering , computer science , physics , thermodynamics , programming language , aerospace engineering
To mitigate the impact forces in crash events, thin-walled tubular elements are employed as an energy absorbing attenuators in frontal part of the automotive vehicles. To develop more progressive deformation modes, at the initial period, and to absorb more impact energy at the final period of crash, it is significant to enhance the crashworthiness performance of the tube by modifying its geometrical parameters. Multi-cell tubular structures have recognized to own superior impact energy absorbing ability and lightweight effect in the modern automotive vehicles. This research article examines the deformation behaviour of thin walled aluminum alloy multi-cell tube with different stiffeners exposed to axial impact loading using numerical simulation. Nonlinear impact simulations were performed on multi-cell tubes using finite element ABAQUS/CAE explicit code. From the overall results obtained, the deformation behaviour of multi-cell tubes was compared. Furthermore, hexagonal tubes with stiffeners were retained as most prominent for better energy dissipation. This type of tube was found to be most efficient type to enhance the crashworthiness performance during axial impact.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here