z-logo
open-access-imgOpen Access
Iot based Agriculture Drought Prediction using Chaotic Genetic Algorithm Integrated Intuitionist Fuzzy Subtractive Clustering
Author(s) -
Margaret Y. Mahan,
L. Pavithra
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d8137.118419
Subject(s) - computer science , cluster analysis , data mining , artificial intelligence , field (mathematics) , machine learning , fuzzy logic , data science , algorithm , mathematics , pure mathematics
The exponential demand in usage of internet of Things (IoT) devices, there is a vast effective improvement in commination among different things. Especially in the field of agriculture, IoT based applications plays a vital role to make the functionalities more reliable. With the perception of IoT and wireless sensor network, smart intelligent farming system has become a significant research area for researchers. Several researchers have developed automation and monitoring system for various agricultural functionalities. One of the serious issues is agricultural droughts which affect crop production or the ecology of the range. This research work aims to overwhelm this issue positively by enhancing the agriculture drought prediction in India. This proposed technique enriches the quality of the dataset by finding the similar patterns using chaos genetic algorithm based Intuitionistic fuzzy Subtractive Clustering. The uncertainty in drought prediction is greatly handled by representing the dataset in the form of intuitionistic fuzzy domain which gives more importance to the degree of indeterminacy. Intuitionistic fuzzy inference system is enhanced with the knowledge of subtractive clustering. The cluster centroids are selected by the chaotic genetic algorithm,which overcomes the earlier convergence and increase the search space in a parallel manner to handle voluminous agriculture dataset. Feed forward neural network is used for predicting the clustered agriculture dataset to provide intelligent smart solution for drought prediction and to improve the crop growth monitoring task by farmers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here