
Behavior of Self-Supporting Communication Tower under Horizontal Loads
Author(s) -
R. González de la P.,
M. Suriya,
Mariappan Anandkumar
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d8041.118419
Subject(s) - tower , parametric statistics , structural engineering , response analysis , horizontal and vertical , transmission tower , geology , engineering , geodesy , statistics , mathematics
Communication towers have been traditionally designed for wind load. The earthquake load has not been observed in the analysis of the communication tower. Recent earthquakes, there have been indications of collapse to the communication tower. Due to the complex nature of the problem, there is a lack of research work in the area of analysis of the communication tower. The purpose of this research is to test the communication tower's response to earthquake ground movement to determine the current design software methodology. The effect of earthquake ground motion spatial variation on multi-support structures dynamic response may be necessary. The aim of this project is to use the traveling wave assumption to investigate the seismic response of high antenna-supporting guyed towers. The horizontal component of the Bhuj earthquake is considered as excitation. Elements of response analyzed are cable tension, base shear, mast axial force and lateral displacement of the tower tip. Parametric analyses show that the structural response tends to increase as the amplitude of the wave decreases and can become much larger than the reaction from synchronous excitation.