z-logo
open-access-imgOpen Access
Count Vectorized Spam and Ham Discernment of Short Message Service using Machine Learning Classification
Author(s) -
M. Shyamala Devi*,
K. Rahul,
Meganathan Kumar Satheesh,
K. Rajasekhar,
Pittala Ganesh Kumar
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d7287.118419
Subject(s) - computer science , naive bayes classifier , classifier (uml) , artificial intelligence , machine learning , support vector machine , quadratic classifier , short message service , decision tree , random forest , computer network
With the growing volume and the amount of spam message, the demand for identifying the effective method for spam detection is in claim. The growth of mobile phone and Smartphone has led to the drastic increase in the SMS spam messages. The advancement and the clean process of mobile message servicing channel have attracted the hackers to perform their hacking through SMS messages. This leads to the fraud usage of other accounts and transaction that result in the loss of service and profit to the owners. With this background, this paper focuses on predicting the Spam SMS messages. The SMS Spam Message Detection dataset from KAGGLE machine learning Repository is used for prediction analysis. The analysis of Spam message detection is achieved in four ways. Firstly, the distribution of the target variable Spam Type the dataset is identified and represented by the graphical notations. Secondly, the top word features for the Spam and Ham messages in the SMS messages is extracted using Count Vectorizer and it is displayed using spam and Ham word cloud. Thirdly, the extracted Counter vectorized feature importance SMS Spam Message detection dataset is fitted to various classifiers like KNN classifier, Random Forest classifier, Linear SVM classifier, Ada Boost classifier, Kernel SVM classifier, Logistic Regression classifier, Gaussian Naive Bayes classifier, Decision Tree classifier, Extra Tree classifier, Gradient Boosting classifier and Multinomial Naive Bayes classifier. Performance analysis is done by analyzing the performance metrics like Accuracy, FScore, Precision and Recall. The implementation is done by python in Anaconda Spyder Navigator. Experimental Results shows that the Multinomial Naive Bayes classifier have achieved the effective prediction with the precision of 0.98, recall of 0.98, FScore of 0.98 , and Accuracy of 98.20%..

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here