
Extended Advanced Method of Clustering Big data to achieve high dimensionality
Author(s) -
N. Sreeram,
Dr.M.H.M. Krishna Prasad,
Dr.kK. Satya Prasad
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d7108.118419
Subject(s) - cluster analysis , computer science , data mining , clustering high dimensional data , correlation clustering , big data , cure data clustering algorithm , data stream clustering , machine learning
Clustering is one of the relevant knowledge engineering methods of data analysis. The clustering method will automatically directly affect the result dataset. The proposed work aims at developing an Extended Advanced Method of Clustering (EAMC) to address numerous types of issues associated to large and high dimensional dataset. The proposed Extended Advance Method of clustering will repetitively avoid computational time between each data cluster object contained by the cluster that saves execution time in term. For each iteration EAMC needs a data structure to store data that can be utilized for the next iteration. We have gained outcomes from the proposed method, which demonstrates that there is an improvement in effectiveness and pace of clustering and precision generation, which will decrease the convolution of computing over the old algorithms like SOM, HAC, and K-means. This paper includes EAMC and the investigational outcomes done using academic datasets