
QUASE: AN Ontology-Based Domain Specific Natural Language Question Answering System
Author(s) -
Vinaytosh Mishra,
Nitesh Khilwani
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d6773.118419
Subject(s) - question answering , computer science , mean reciprocal rank , natural language processing , artificial intelligence , natural language , information retrieval , ontology , rank (graph theory) , sentence , lexical analysis , philosophy , mathematics , epistemology , combinatorics
Since early days Question Answering (QA) has been an intuitive way of understanding the concept by humans. Considering its inevitable importance it has been introduced to children from very early age and they are promoted to ask more and more questions. With the progress in Machine Learning & Ontological semantics, Natural Language Question Answering (NLQA) has gained more popularity in recent years. In this paper QUASE (QUestion Answering System for Education) question answering system for answering natural language questions has been proposed which help to find answer for any given question in a closed domain containing finite set of documents. Th e QA s y st em m a inl y focuses on factoid questions. QUASE has used Question Taxonomy for Question Classification. Several Natural Language Processing techniques like Part of Speech (POS) tagging, Lemmatization, Sentence Tokenization have been applied for document processing to make search better and faster. DBPedia ontology has been used to validate the candidate answers. By application of this system the learners can gain knowledge on their own by getting precise answers to their questions asked in natural language instead of getting back merely a list of documents. The precision, recall and F measure metrics have been taken into account to evaluate the performance of answer type evaluation. The metric Mean Reciprocal Rank has been considered to evaluate the performance of QA system. Our experiment has shown significant improvement in classifying the questions in to correct answer types over other methods with approximately 91% accuracy and also providing better performance as a QA system in closed domain search.