z-logo
open-access-imgOpen Access
Petroleum Physical Properties Prediction Application in Enhanced Oil Recovery Process
Author(s) -
Harry Budiharjo Sulistyarso,
Dyah Ayu Irawati,
Joko Pamungkas,
Indah Widiyaningsih
Publication year - 2021
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d6572.1110421
Subject(s) - surface tension , viscosity , oil viscosity , petroleum engineering , multivariate statistics , enhanced oil recovery , petroleum , linear regression , process (computing) , python (programming language) , oil field , regression analysis , process engineering , environmental science , computer science , mathematics , statistics , materials science , geology , engineering , thermodynamics , paleontology , physics , composite material , operating system
The Enhanced Oil Recovery (EOR) process is one of the ways in the petroleum exploitation process so that thick oil can be lifted to the surface and produced. The EOR process referred to in this study is the EOR process carried out in previous studies at the EOR laboratory of UPN Veteran Yogyakarta Indonesia by adding biosurfactants and adjusting the temperature. In laboratory experiments, each time an amount of biosurfactant concentration is added and the temperature is adjusted, the calculation must be done repeatedly to determine the amount of viscosity, interfacial tension (IFT), and density. This experiments takes a long time, requires high cost and variety limitation of the condition. The previous research has succeeded in building a model with multivariate polynomial regression equations to predict the value of the physical properties of crude oil from existing data then classify it into three categories using Naive Bayes, i.e., light oil, medium oil, and heavy oil. The physical properties of petroleum measured in the research are viscosity, interfacial tension, and density. The model uses laboratory data which are taken from the test results of Pertamina's KW-55 well as validation. The validation result shows that Multivariate Polynomial Regression has succeeded in predicting the value of viscosity, interfacial tension, and density with error values ranging from 0% to 1% from the sample data. With a low error value, the application can make forecasting with more variable conditions. The model still cannot be used independently without the Python environment, so to be used easily by more users, the model must be built into an independent application that can be installed on the user's device. In this research, the prediction application of petroleum physical properties has been built. The application is made using the Multivariate Polynomial Regression method according to the model in the previous study to predict the physical properties of petroleum, then uses Naïve Bayes to classify the oil. The application completed the several adjustment to shift from model to application, including user interface, system, and database adjustments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here