z-logo
open-access-imgOpen Access
Adsorption of Hydrogen Sulphide by Commercialized Rice Husk Biochar (RHB) & Hydrogel Biochar Composite (RH-HBC)
Author(s) -
Ashadi Azwan Abd Rahman*,
Azil Bahari Alias,
Nurul Najihah Jaafar,
Muhamad Ariff Amir Hamzah,
Wan Azlina Wan Ab Karim Ghani
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.d5207.118419
Subject(s) - biochar , adsorption , husk , chemistry , nuclear chemistry , ammonium persulfate , activated carbon , hydrogen sulfide , pyrolysis , polymerization , organic chemistry , sulfur , polymer , biology , botany
Hydrogen sulfide (H2S) is a naturally occurring component found during microbial disintegration and processing of natural gas & oil which can cause wellbeing and condition issue if being discharged into a climate at high fixation. Activated carbon which cost a lot in manufacturing is used as an adsorbent for removing these hazardous gases. As an alternative, the abundance waste of biomass available can be converted into good use. Biochar is one of the most practical and promising adsorbents that shows incredible potential as an adsorbent for the expulsion of contaminants in wastewater and gas treatment. This study covered on the characteristics and adsorption performance of two adsorbents Activated Rice Husk Biochar (RHB) and Rice Husk Hydrogel Composite (RH-HBC) on hydrogen sulfide. RHB is prepared by treating grinded rice husk biochar using aqueous Zinc Chloride (ZnCl2 ) and hydrochloric acid (HCl) solution to increase the size of pores of active sites and remove the impurities present in on the adsorbents. Polymerization is conducted by using initiator (ammonium persulfate, APS), monomer (acrylamide, AAm) and crosslinker (N,N'-methylenebisacrylamide,MBA) to create treated hydrogel biochar (RH-HBC). The adsorption performance is done to evaluate the effect of sorbent weight (20 g, 25 g, 30 g), H2S gas flow rate (200 L/hr, 150 L/hr, 100 L/hr) and temperature (30℃, 50℃, 70℃). RHB shows better porosity compared to RH-HBC where it has a higher surface area (222.85m2/g) compared to RH-HBC (8.68m2/g). While the presence of alkene group C=C in RH-HBC gives more stability to withstand high temperature compared to RHB. From the result, it can be concluded that the increased the sorbent weight, give an increased in adsorption capacity. When increased the gas flow rate, it gives a shorter contact time between gas and adsorbent which result in less adsorption capacity. RH-HBC give longest breakthrough time and highest adsorption capacity compared with RHB in all experiment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here