
Tribological Behavior and Hardness Properties of Heat Treated Al 7075-Beryl-Graphene Hybrid Metal Matrix Composites
Author(s) -
Shanawaz Patil*,
Mohamed Aslam Haneef
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.c6868.098319
Subject(s) - materials science , brinell scale , composite material , microstructure , alloy , tribology , graphene , aluminium , indentation hardness , nanotechnology
The emerging technologies and trends of the present generation require downsizing the unwieldy structures to lightweight structures. Aluminum matrix composites are tailored candidate materials for aerospace applications due to their outstanding greater strength to weight ratio and low wear rate. In this study, Al7075 alloy-Beryl-Graphene hybrid composites are developed by using stir casting process. Graphene weight percentage was varied from 0 wt. % to 2 wt. % in steps of 0.5 wt. %. Whereas for Beryl 6 wt. % is used thorough out the study. The casted specimens were heat-treated at T6 solutionizing temperature of 530±5oC for 8 hours. After the heat treatment the specimen are quenched in boiling Water and Ice. The microstructure of the newly developed hybrid MMCs has been investigated by TEM and SEM. The microstructural study reveals the uniform distribution of reinforcement into matrix materials. The hardness and wear behavior of matrix and hybrid composites before and after heat treatment examined by Brinell hardness test and Pin-on-disc test machine respectively. The heat-treated Al7075-Beryl-Graphene hybrid composites significantly improved the hardness and low wear rate compared to base matrix Al7075 alloy