z-logo
open-access-imgOpen Access
Adaptive Region Growing Image Segmentation Algorithms for Breast MRI
Author(s) -
Joe Arun Raja*,
N. Kishore Babu
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.c5912.098319
Subject(s) - region growing , segmentation , artificial intelligence , algorithm , pattern recognition (psychology) , particle swarm optimization , computer science , breast cancer , selection (genetic algorithm) , image segmentation , mathematics , medicine , cancer , scale space segmentation
Early detection and characterization of breast lesion are important for a better and effective treatment of breast cancer. In this paper, four different adaptive region growing image segmentation algorithms are compared. In fact, seed selection was a vital step in the success of region growing methods, so, better schemes for seed selection methods are proposed, namely, joint probabilistic seed selection (JPSS) and Generalised simulated annealing (GSA) based seed selection. The proposed region growing methods namely Fuzzy Region Growing (FRG) and Neutrosophic Region Growing (NRG) are integrated as JPSS-FRG and GSA-NRG frameworks. Another two methods are Scale Invariant Region growing (SiRG) and Fuzzy Neutrosophic Confidence Region growing (FNCRG). The results showed that FNCRG algorithm increases breast cancer detection rate on MRI breast images with the maximum of 93% is achieved. SiRG algorithm improves the true positive rate by 13% compared to existing methods. Further, GSA-NRG makes better segmentation accuracy by 9% and true positive rate by 12%. Also, JPSS-FRG algorithm enhances segmentation accuracy by 24% and improving the true positive rate by 27% compared to Region Growing-Cellular Neural Network (RG-CNN) and Seeded Region Growing-Particle swarm optimization (SRG-PSO) methods respectively

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here