
Enhancing the Quality Education using Predictive and Descriptive Data Mining Model
Author(s) -
Mr. S. Jayakumar,
R. Parameswari*,
Dr.A. Akila
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.c5795.098319
Subject(s) - c4.5 algorithm , computer science , data mining , naive bayes classifier , educational data mining , cluster analysis , field (mathematics) , random forest , categorization , association rule learning , machine learning , knowledge extraction , apriori algorithm , quality (philosophy) , feature (linguistics) , artificial intelligence , support vector machine , mathematics , philosophy , linguistics , epistemology , pure mathematics
Data mining is the trending field used to get relevant knowledge from the database given. This technique consists of subfield called educational data mining is the emerging area used to extract the hidden patterns from the huge data with the help of tools techniques developed by the researchers of the educational data mining. The purpose of extracting patterns from the educational database is to improve the quality of education can be provided to the students for their better feature. The patterns are extracted by using the existing data mining techniques to enhance student performance. Educational data mining techniques such as classification, regression, clustering are available in the field. Classification is defined as the technique used to categorize the data based on the given label and constraints. In this paper, the algorithms like naves Bayes, Random Forest and J48 algorithms used to classify the data instances under the given labels using the constraints given., the classification algorithms like naves Bayes shows best performance accuracy with the given student dataset. Clustering and apriori rule have a strong relationship in student performance. In this paper, predictive data mining used to predict the student's performance to enhance the study level of the students in the organization.