z-logo
open-access-imgOpen Access
Swarm Intelligence Techniques in Segmenting Human Retinal Vasculature
Author(s) -
Dr .A. Anitha,
T. Sridevi
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.b3473.078219
Subject(s) - artificial intelligence , adaptive histogram equalization , particle swarm optimization , segmentation , computer science , swarm behaviour , swarm intelligence , pattern recognition (psychology) , computer vision , histogram , histogram equalization , image (mathematics) , machine learning
Vasculature of human retina furnishes information concerning various eye related ailments and also assists in lesions detection. Severity of the eye diseases can be discerned from pathological conditions related to changes in the retinal vasculature. In this work, for pre-processing, Contrast Limited Adaptive Histogram Equalization (CLAHE) and average filter is used to enhance the input image. Further, swarm intelligence techniques, Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO), Fractional OrderDarwinian Particle Swarm Optimization (FO-DPSO) are used in segmenting the blood vessels of the human retina. Additionally, similarity index metrics are employed in evaluating the accuracy of the retinal vasculature segmentation with ground truth. The results obtained clearly reveals that FO-DPSO outperforms in segmenting accurately than PSO and DPSO. Results of the segmentation are further reinforced using box and dendogram plot

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here