
Psychological Stress Prediction on Social Media using Convolutional Neural Network
Author(s) -
P. Uma Maheswari
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.b1583.0982s1119
Subject(s) - convolutional neural network , social media , artificial intelligence , computer science , stress (linguistics) , deep learning , perspective (graphical) , machine learning , suicidal ideation , psychology , world wide web , poison control , human factors and ergonomics , philosophy , linguistics , medicine , environmental health
Psychological stress which is a mental illness also causes physical problems to the human. Nowadays social media plays an important role in the world for communication to share their thoughts with their friends and family. The social media analysis is the process of detecting and predicting the user's thoughts and opinions which also one of the important perspective in the developing business environment. The overwhelming stress and long term stress sometimes lead to suicidal ideation. By analyzing the social media content to predict the overwhelming stress state of the users in the earlier stage will reduce the psychological stress and suicidal rate too. In this paper, we address the problem of stress prediction by using social media. The machine learning and deep learning methods to perform the classification of stress analysis. Here both image and text- tweet data are used and the images are processed with the Optical Character Recognition and the text data are processed by using the Natural Language Processing and Convolutional Neural Network for classifying the tweet content of the user as stressed or non-stressed. Furthermore, with the advancement of the machine learning and deep learning method of classification gives a better result in terms of performance and accuracy of the prediction.