z-logo
open-access-imgOpen Access
Spam Detection using NLP Techniques
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.b1280.0982s1119
Subject(s) - artificial intelligence , computer science , support vector machine , naive bayes classifier , machine learning , classifier (uml) , random forest , decision tree , conditional random field , natural language processing , pattern recognition (psychology)
Natural Language Processing is a vital field of research having applications in different subjects. Text Classification is a part of NLP where the text is converted into a machine-readable form by performing various methods. Tokenizing, part-of-speech tagging, stemming, chunking are some of the text classification methods. Implementing these methods on our data gives us a classified data on which we will train the model to detect spam and ham messages using Scikit-Learn Classifiers. We proposed a model to solve the issue of classifying messages as spam or ham by experimenting and analyzing the relative strengths of several machine learning algorithms such as K-Nearest Neighbors (KNN), Decision Tree Classifier, Random Forest Classifier, Logistic Regression, SGD Classifier, Multinomial Naive Bayes(NB), Support Vector Machine(SVM) to have a logical comparison of the performance measures of the methods we utilized in this research. The algorithm we proposed achieved an average accuracy of 98.49% with SVM model on ‘SMS Spam Collection’ dataset

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here