z-logo
open-access-imgOpen Access
A Simplified Research for Mathematical Expression Recognition and Its Conversion to Speech
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.b1008.0882s819
Subject(s) - braille , optical character recognition , computer science , symbol (formal) , digitization , set (abstract data type) , domain (mathematical analysis) , software , speech recognition , subject (documents) , variety (cybernetics) , natural language processing , artificial intelligence , mathematics , image (mathematics) , computer vision , world wide web , mathematical analysis , programming language , operating system
The number of visually impaired people appearing for various examination is increasing every year while on the other hand, there are several blind aspirants who are willing to enrich their knowledge through higher studies. Mathematics is one of the key language (subject) for those who are willing to pursue higher studies in science stream. There is a lot of advanced Braille techniques and OCR to speech conversion software's made available to help visual impaired community to pursue their education but still the number of visually impaired students getting admitted to higher education is less. This is not because most of the data is on paper in the form of books and documents. So, there is a great need to convert information from the physical domain into the digital domain which would help the visually impaired people to read the advanced mathematics text independently. Optical Character Recognition (OCR) systems for mathematics have received considerable attention in recent years due to the tremendous need for the digitization of printed documents. Existing literature reveals that, most of the works concentrated on recognizing handwritten mathematical symbols and some works revolve around complex algorithms. This paper proposes a simple, yet efficient approach to develop an OCR system for mathematics and its conversion to speech. For Mathematical symbol recognition, Skin and Bone algorithm is proposed, which proved its efficiency on a variety of data set. The proposed methodology has been tested on 50 equations comprising various symbols such as integral, differential, square, square root and currently achieving recognition rate of 92%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here