
Detection of Breast Cancer using Digital Image Processing Techniques
Publication year - 2019
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.b1002.0782s219
Subject(s) - artificial intelligence , mammography , computer science , naive bayes classifier , pattern recognition (psychology) , breast cancer , segmentation , classifier (uml) , support vector machine , computer aided diagnosis , artificial neural network , cancer , medicine
Breast cancer, a major public health contention and currently causes an increased rate of cancer death in women. The preeminent intent of this project in medical diagnostics is by using mammography, that is a unique imaging technique in medicine for examining the breasts. A higher quality mammographic images (for example electronic pictures) are stored, mammography method (i.e exam) is performed, which is a prior stage for detection and diagnosis of bosom’s malignant growth. In order to detect the tumor FCM algorithm for segmentation is used and the features are extracted by using multi-level wavelet transformation technique with PCA and then some features are added with GLCM features. Further, those segmented region features are extracted and the dataset is trained and tested completely. The images are classified by using SVM, KNN, Tree classifier, Neural Networks or Naive Bayes classifier. Finally, the images from Kaggle dataset are compared and categorized as normal, benign or malignant tumors.