
Torsional Strain Energy of Normal Concrete and SCC with Glass and Steel fibers
Author(s) -
M. Swamy,
G. Prince Arulraj
Publication year - 2020
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.a2714.059120
Subject(s) - materials science , composite material , torsion (gastropod) , strain energy , ultimate tensile strength , compressive strength , glass fiber , shear (geology) , strain (injury) , deformation (meteorology) , structural engineering , finite element method , medicine , surgery , engineering
Concrete is a two phase material with initial internal micro cracks before loading. When the load is applied on the specimen these internal cracks propagate and material fails after reaching its maximum allowable stress. There are different force systems like tensile, compressive, shear, torsion and combination of above. The strain energy is the energy which develops internally in the material to resist deformation because of application of external load. So if the minimum energy level is reached the deformation exceeds its plastic limit and cracks start propagating from tensile zone to compressive zone. Usually the torsional strain energy is studied to define the material characteristics for taking twisting and rotational effects in the member. A study is made regarding the torsional strain energy of ordinary and SCC with glass and steel fibers. Also a comparison is made for strain energy by experimental and analytical models. To give additional strength to the concrete, steel, and glass fibers are also added to SCC and their torsional strain energy was estimated.