z-logo
open-access-imgOpen Access
Synthetic Minority Oversampling and Smote Regularised Deep Autoencoders Neural Network Techniques for Fraud Prediction in Financial Payment Services
Author(s) -
J. Anita Smiles*,
A. Sasi Kumar
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.l3419.1081219
Subject(s) - oversampling , computer science , payment , machine learning , artificial intelligence , classifier (uml) , credit card fraud , random forest , decision tree , database transaction , financial services , ensemble learning , credit card , finance , business , database , bandwidth (computing) , computer network , world wide web
Frauds in Financial Payment Services are the most prevalent form of cybercrime. The increased growth in e-commerce and mobile payments in recent years is behind the rising incidence of fraud in financial payment services. According to "McKinsey, fraud losses throughout the world could be close to $44 billion by 2025." Every year, fraudulent card transactions causes billions of US Dollar of loss. To reduce these losses, designing effective fraud detection algorithms is essential, which depend on sophisticated machine learning methods to help investigators in fraud. For banks and financial institutions, therefore, fraud detection systems have gained excellent significance. Though the fake transactions are very low when compared to genuine transaction, care must be taken to predict it so that the financial institutions can maintain the customer integrity. As fraud is unlikely to occur compared to normal operations, we have the class imbalance problem. We applied Synthetic Minority Oversampling TEchnique (SMOTE) and the Ensemble of sampling methods(Balanced Random Forest Classifier, Balanced Bagging Classifier, Easy Ensemble Classifier, RUS Boost) to Ensemble machine learning algorithms Performance assessment using sensitivity, specificity, precision, ROC area. The purpose of this article is to analyze different predictive models to see how precise they are to detect whether a transaction is a standard payment or a fraud. Instead of misclassifying a real transaction as fraud, this model seeks to improve detection of fraud. We noted that the technique of Ensemble learning using Maximum voting detects the fraud better than other classifiers. Decision Tree Classifier, Logistic Regression, Balanced Bagging classifier is combined and the proposed algorithm is OptimizedEnsembleFD Algorithm. The sample size is increased and deep learning is applied .It is found that the proposed system Smote Regularised Deep Autoencoders (SRD Autoencoders) neural network performs better with good recall and accuracy for this large dataset.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here