
Modification of Engineering Properties of Clayey Soil by Addition of Mine Waste
Author(s) -
Shravan A. Kanalli,
Sureka Naagesh,
K Ganesh
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.l3370.1081219
Subject(s) - atterberg limits , expansive clay , tailings , compressive strength , environmental science , california bearing ratio , compaction , waste management , geotechnical engineering , overburden , mining engineering , geology , soil water , engineering , water content , soil science , materials science , metallurgy , composite material
The potential of using iron ore mine waste with an highly compressible clayey soil soil from North Karnataka, India, is investigated in this study. Mining activities lead to the production of waste materials during their extraction and processing stages. The waste maybe in the form of an overburden, waste Rock, Mine Water, or Tailings, depending on the geology, type of processing technology used and the resources mined. The lack of storage space has also been a major concern for the mineral producing agencies, thus paving ways for its better utilization in various construction processes. The collected mine waste was added to expansive soil in different percentages and the mix was tested for Atterberg limits, compaction characteristics, Unconfined compressive strength and California bearing Ratio. It was found that the liquid limit and plasticity index of the soil reduced with addition of mine waste while strength improved. Based on test results of maximum dry density and unconfined compressive strength, a mix of 40% mine waste with 60% expansive clayey soil is recommended for low cost roads. Blending mine waste with expansive soil paves way for sustainable construction besides economic benefits