
Design and Simulation of Nozzle for Pure Water Jet Portable Cutting Tool
Author(s) -
Razali Abidin,
John R. Paul,
Tarmizi Ahmad,
Hilman Nordin,
W. Hanif,
Wan Fairos Wan Yaacob
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.l1122.10812s219
Subject(s) - nozzle , pressure drop , inlet , computational fluid dynamics , water jet , materials science , jet (fluid) , drop (telecommunication) , mechanics , mechanical engineering , finite element method , work (physics) , structural engineering , engineering , physics
A pure water jet at subsonic speed provides an opportunity for application in cutting soft material with the advantage of not contaminating the workpiece. Inside the nozzle, water is flowing through various cross sections, which lead to pressure drop and loss of energy. This requires a nozzle with a design that causes minimum pressure drop. In this work, Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) were used to analyse the flow through five different nozzles. For each nozzle, the pressures of 10 MPa, 20 MPa and 30 MPa were applies at the inlet. For the inlet pressure of 10 MPa, the highest outlet velocity us 136.12 m/s at the pressure of 9.261 MPa. The impact pressure at stand distance of 0.5 mm and 1.0 mm were 8.26 MPa and 8.02 MPa, respectively. For this nozzle, the Factor of Safety for 10 MPa, 20 MPa and 30 MPa were 6.4, 3.2 and 2.961, respectively. The findings are relevant to the development of pure water jet cutting machine