
Design and Finite Element analysis of Thick walled Laminated Composite Pressure Vessel
Author(s) -
Sarada Prasad Parida,
Pankaj Charan Jena
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.j9831.0881019
Subject(s) - pressure vessel , finite element method , composite number , filament winding , materials science , structural engineering , epoxy , stiffness , composite material , internal pressure , engineering
Composite materials in general offer a high potential for manufacturing of structures with featuring an interesting mechanical performance, mainly with regards to specific stiffness, specific strength, damage tolerance and energy absorption capability. In current analysis, glass fibre reinforced in epoxy resin to form a laminated composite walled pressure vessel(filament winding) is considered for design. The purpose of this work is primarily to perform finite element analysis (FEA) of a composite walled pressure vessel (CPV) under different loads. Different design stresses and strains are evaluated using Lame’s equation. These outcomes are tabulated and examined with the results of the steel walled pressure vessel used for LPG. It is foundthat CPV is a suitable vessel for LPG storage and it can be replaced current LPG steel walled vessel to CPV.