
An Experimental Programme on Frc with Opc, Flyash, Ggbs, and Metakaolin
Author(s) -
Dr.N. Sanjeev,
Katta. Manoj
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.j9670.0881019
Subject(s) - metakaolin , ground granulated blast furnace slag , pozzolan , sorptivity , portland cement , cementitious , fly ash , cement , compressive strength , ultimate tensile strength , materials science , properties of concrete , lime , durability , composite material , environmental science , waste management , metallurgy , engineering
The production of Ordinary Portland Cement (OPC) is increasing year by year world over. Further, the production of every tonne of OPC generates one tonne of green house gases, (CO2 ) which results in Global Warming. Usage of OPC is more in construction industry as it is a major ingredient in Concrete. As the usage of Concrete is increasing year by year, more and more is the OPC production and hence the environment is getting polluted; added to this undesirable scenario, the natural resources like lime stone used to manufacture cement and river sand are getting depleted year by year. In order to prevent the usage of large amounts of OPC in Concrete, mineral admixtures like Ground Granulated Blast furnace Slag (GGBS), Fly Ash and Metakaolin which are pozzolanic and cementitious in nature are adopted to replace certain percentages of OPC. Manufactured Sand (M-sand) is adopted to replace river sand. Experimental investigation is conducted on fiber reinforced concrete with steel fibers @1% of weight of binder by casting requisite number of cubes and cylinders of concrete of grade M25; in these mixes OPC is replaced with GGBS, Fly Ash and Metakaolin up to 45%. Mechanical properties are determined by conducting compressive strength and split tensile strength tests; additionally some of the durability properties are established by conducting Water absorption and Sorptivity tests. Test results are comparable between controlled concrete and innovative concrete of present investigation.