
Dengue Disease Detection using K- Means, Hierarchical, Kohonen- SOM Clustering
Author(s) -
P. Yogapriya,
P. Geetha
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.j9066.0881019
Subject(s) - cluster analysis , dengue fever , self organizing map , computer science , data mining , categorization , hierarchical clustering , artificial intelligence , k means clustering , machine learning , pattern recognition (psychology) , medicine , immunology
Data Mining is the process of extracting useful information. Data Mining is about finding new information from pre-existing databases. It is the procedure of mining facts from data and deals with the kind of patterns that can be mined. Therefore, this proposed work is to detect and categorize the illness of people who are affected by Dengue through Data Mining techniques mainly as the Clustering method. Clustering is the method of finding related groups of data in a dataset and used to split the related data into a group of sub-classes. So, in this research work clustering method is used to categorize the age group of people those who are affected by mosquito-borne viral infection using K-Means and Hierarchical Clustering algorithm and Kohonen-SOM algorithm has been implemented in Tanagra tool. The scientists use the data mining algorithm for preventing and defending different diseases like Dengue disease. This paper helps to apply the algorithm for clustering of Dengue fever in Tanagra tool to detect the best results from those algorithms.