Critical Scrutiny of Page Replacement Algorithms: FIFO, Optimal and LRU
Author(s) -
Jogamohan Medak,
Partha Pratim Gogoi
Publication year - 2020
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.j7553.0891020
Subject(s) - demand paging , page fault , virtual memory , computer science , memory map , page , thrashing , interleaved memory , flat memory model , registered memory , auxiliary memory , memory management , parallel computing , set (abstract data type) , process (computing) , algorithm , operating system , semiconductor memory , shared memory , programming language
Virtual memory plays an important role in memory management of an operating system. A process or a set of processes may have a requirement of memory space that may exceed the capacity of main memory. This situation is addressed by virtual memory where a certain memory space in secondary memory is treated as primary memory, i.e., main memory is virtually extended to secondary memory. When a process requires a page, it first scans in primary memory. If it is found then, process continues to execute, otherwise a situation arises, called page fault, which is addressed by page replacement algorithms. This algorithms swaps out a page from main memory to secondary memory and replaced it with another page from secondary memory in addition to the fact that it should have minimum page faults so that considerable amount of I/O operations, required for swapping in/out of pages, can be reduced. Several algorithms for page replacement have been formulated to increase the efficiency of page replacement technique. In this paper, mainly three page replacement algorithms: FIFO, Optimal and LRU are discussed, their behavioural pattern is analysed with systematic approach and a comparative analysis of these algorithms is recorded with proper diagram.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom