
Application of Various Machine Learning Techniques in Sentiment Analysis for Depression Detection
Author(s) -
R. M. Tharsanee
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.j1052.08810s19
Subject(s) - depression (economics) , psychology , artificial intelligence , mental health , computer science , machine learning , data science , psychiatry , economics , macroeconomics
Depression is the world’s fourth leading disease and will be in the second in 2020 according to the statistics of World Health Organization.Depression affects many people irrespective of their age, geographic location, demographic or social position and more commonly affects females than males.Depression is a mental disorder which can impair many facets of human life. Though not easily detected it has intense and wide-ranging impressions. Although many researchers explored numerous techniques in predicting depression, still there is no improvement and the generations are facing higher rate of depression. It is believed that the depression detection algorithms can be more accurate and their performance can be better if they rely on artificial intelligence. On considering these factors, it is planned to perform a survey on the application of various machine learning techniques that have been used in the domain of sentimental analysis for depression detection.