
Responses of Building Base Isolated With High Damping Rubber Bearings
Author(s) -
Nguyễn Anh Dũng,
Quang Hung Nguyen
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.i8205.078919
Subject(s) - roof , base isolation , acceleration , structural engineering , base (topology) , natural rubber , peak ground acceleration , building model , engineering , finite element method , geology , geotechnical engineering , ground motion , mechanical engineering , materials science , mathematics , physics , simulation , mathematical analysis , classical mechanics , frame (networking) , composite material
Seismic isolation is one of the most efficient techniques to protect structures against earthquakes. Rubber bearings are suitable for low-rise and medium-rise buildings due to its durability and easy fabrication. This paper presents the hori-zontal response of a six-storey base-isolated building using high damping rubber bearings (HDRB) under two ground motions of earthquakes as types I and II in JRA (2002) by finite element analysis. In this analysis, these bearings are mod-elled by the bilinear hysteretic model which is indicated in JRA and AASHTO. Comparison of horizontal response including base shear force and roof level acceleration between the two cases: base-isolated building and fixed-base building is carried out to evaluate the effectiveness of the use of HDRB on the protection of buildings from earthquakes. The numerical results show that the peak value of roof floor acceleration of the fixed-base building is two times higher than that of the base-isolated building, and the floor accelerations depend on the peak values of ground acceleration. In addition, the step-by-step design procedure for deter-mining the size of HDRBs used for buildings is also presented in this paper.