
Hybrid Bee Colony and Cuckoo Search based centroid initialization for fuzzy c-means clustering in bio-medical image segmentation
Author(s) -
Dr.M. Vijayakumar,
Dr.S. Velmurugan,
Dr.V. Mohan,
Dr.P. Shanmugapriya
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.i8149.078919
Subject(s) - initialization , cluster analysis , centroid , segmentation , computer science , cuckoo search , artificial intelligence , pattern recognition (psychology) , fuzzy logic , image segmentation , data mining , machine learning , particle swarm optimization , programming language
In current years, the grouping has become well identified for numerous investigators due to several application fields like communication, wireless networking, and biomedical domain and so on. So, much different research has already been made by the investigators to progress an improved system for grouping. One of the familiar investigations is an optimization that has been efficiently applied for grouping. In this paper, propose a method of Hybrid Bee Colony and Cuckoo Search (HBCCS) based centroid initialization for fuzzy c-means clustering (FCM) in bio-medical image segmentation (HBCC-KFCM-BIM). For MRI brain tissue segmentation, KFCM is most preferable technique because of its performance. The major limitation of the conventional KFCM is random centroids initialization because it leads to rising the execution time to reach the best resolution. In order to accelerate the segmentation process, HBCCS is used to adjust the centroids of required clusters. The quantitative measures of results were compared using the metrics are the number of iterations and processing time. The number of iterations and processing of HBCC-KFCM-BIM method take minimum value while compared to conventional KFCM. The HBCC-KFCM-BIM method is very efficient and faster than conventional KFCM for brain tissue segmentation.