
Evaluation of Unsupervised Anomaly Detection Methods in Sentiment Mining
Author(s) -
K. Sudha,
N. Suguna
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.i8012.078919
Subject(s) - anomaly detection , intrusion detection system , data mining , computer science , preprocessor , stock market , anomaly (physics) , data pre processing , artificial intelligence , geography , physics , condensed matter physics , context (archaeology) , archaeology
Anomaly detection has vital role in data preprocessing and also in the mining of outstanding points for marketing, network sensors, fraud detection, intrusion detection, stock market analysis. Recent studies have been found to concentrate more on outlier detection for real time datasets. Anomaly detection study is at present focuses on the expansion of innovative machine learning methods and on enhancing the computation time. Sentiment mining is the process to discover how people feel about a particular topic. Though many anomaly detection techniques have been proposed, it is also notable that the research focus lacks a comparative performance evaluation in sentiment mining datasets. In this study, three popular unsupervised anomaly detection algorithms such as density based, statistical based and cluster based anomaly detection methods are evaluated on movie review sentiment mining dataset. This paper will set a base for anomaly detection methods in sentiment mining research. The results show that density based (LOF) anomaly detection method suits best for the movie review sentiment dataset.