
Performance Evaluation of Several Machine Learning Techniques Used in the Diagnosis of Mammograms
Author(s) -
Sushreeta Tripathy
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.i7891.0881019
Subject(s) - machine learning , artificial intelligence , support vector machine , computer science , mammography , naive bayes classifier , categorization , classifier (uml) , multilayer perceptron , breast cancer , artificial neural network , cancer , medicine
Throughout the world breast cancer has become a common disease among the women and it is also a life threatening diseases. Machine learning(ML) approach has been widely used for the diagnosis of benign and malignant masses in the mammogram. In this manuscript, I have represented the theoretical research and practical advances on various machine learning techniques the diagnosis of benign and malignant masses in the mammogram. The objective of this manuscript is to analyze the performance of distinct machine learning techniques used in the diagnosis of the Digital Mammography Image Analysis Society (MIAS) database. In this work I have compared performance of four machine learning approaches i.e. Support Vector, Naive Bayes, K-Nearest Neighbours and Multilayer Perceptron. The above four types of machine learning algorithm are used to categorize mammograms image. The achievements of these four techniques were recognized to discover the most acceptable classifier. On the end of the examine, derived outcomes indicates that support vector is a successful approach compares to other approach.