z-logo
open-access-imgOpen Access
An advanced signal processing based multiclass power quality disturbance detection and classification technique for grid connected solar PV farm
Author(s) -
Kanche Anjaiah,
Rajesh Kumar Patnaik
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.i7781.078919
Subject(s) - computer science , pattern recognition (psychology) , kurtosis , wavelet transform , artificial intelligence , wavelet , algorithm , mathematics , statistics
This paper presents an efficient event detection and classification technique for multiple power quality (PQ) disturbances. Initially synthetic power quality disturbances are simulated and then are directly processed to proposed algorithms to generate the target feature sets which comprises of energy, entropy, root mean square (RMS), mean, standard deviation, kurtosis, variance and maximum peak respectively. After the overall data analysis, it was found that thirteen power quality events out of the overall generated PQ disturbances were distinctively classified. Eventually these target features are passed through simple decision tree based event classifier for PQ events classification. The proposed algorithms are change detection filter (CDFT) with noise, without noise and synchrosqueeze wavelet transform (SST) has been scrutinized for number of disturbances presented in the PQ events. The proposed technique SST is applied for PV based microgrid to enhance the real time performance of the proposed technique where it has been verified as a superior technique as compared with the some of the existing event classification techniques such as wavelet transform (WT), stock well transform (SR),etc. The entire process has been verified in the in the MATLAB /Editor. The proposed technique evades the need of further signal processing techniques for detection and classification PQ events, thus ensconced less computational complexity and faster execution. Hence it is an efficient algorithm for real time applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here