z-logo
open-access-imgOpen Access
Detection of Diabetes By Machine Learning Technique
Author(s) -
Vandana C. Bavkar,
Arundhati Shinde
Publication year - 2020
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.f4501.059720
Subject(s) - diabetes mellitus , machine learning , artificial intelligence , naive bayes classifier , computer science , decision tree , blood sugar , insulin , support vector machine , medicine , algorithm , endocrinology
Diabetes is a most important health dispute that has reached distressing levels; today approximately half a billion individuals are living with diabetes universal. Diabetes is a state that damages the body’s capability to process glucose in blood, otherwise known as blood sugar. It is a metabolic disease that reasons high blood sugar. The hormone insulin transfers sugar from the blood into your cells to be stored for energy. With diabetes, your body either doesn’t make sufficient insulin or can’t efficiently use the insulin it does makes. The motive of this research is to design a method or prototype which can detect or predict the diabetes in patients with high precision. Therefore different machine learning classification algorithms namely decision tree, support vector machine, Naïve Bayes and k-NN are used in this research work for prediction of the diabetes. Two databases are used for experimentation. The first one is created from hospital with 82 patients and second one is readily available Pima Indian Diabetes database. The performances of different machine learning algorithms are estimated on different measures like Precision, Recall, F-measure and accuracy. The objective of this research is to study the accuracy of different machine learning algorithms and hence identify set of suitable algorithms for prediction of diabetes for further research work.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here