z-logo
open-access-imgOpen Access
Novel Cubic Fermatean Fuzzy Soft Ideal Structures
Author(s) -
Dr.S.V. Manemaran*,
Dr.R. Nagarajan
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.d9929.129219
Subject(s) - ideal (ethics) , fuzzy logic , fuzzy set , set (abstract data type) , set theory , mathematics , class (philosophy) , computer science , algebraic number , algebra over a field , pure mathematics , artificial intelligence , mathematical analysis , philosophy , epistemology , programming language
The theory of collections is a necessary mathematical tool. It gives mathematical models for the class of problems that explains with exactness, precision and uncertainty. Characteristically, non crisp set theory is extensional. More often than not, the real life problems inherently involve uncertainties, imprecision and not clear. In particular, such classes of problems arise in economics, engineering, environmental sciences, medical sciences, and social sciences etc. They studied basic operations over the fermatean uncertainty sets. Here we shall introduce three new operations, subtraction, division, and fermatean sum of mean operations over fermatean uncertainty sets. Several researchers have considered q-rung orthopair fuzzy sets as fermatean uncertainty sets (FUSs). The Fuzzy Set Theory approach is found most appropriate for dealing with uncertainties. However, it is short of providing a mechanism on how to set the membership function extremely individualistic. The major reason for these difficulties arising with the above theories is due to the inadequacies of their parameterization tools. In order to overcome these difficulties, in 1999 Molodtsov [7] introduced the concept of soft set as a completely new Mathematical tool with adequate parameterization for dealing with uncertainties. In this area, we introduce the concept of cubic fermatean uncertainty soft set and define cubic fermatean uncertainty soft sub algebra of KU-algebras’ which is applicable in various algebraic structures. In addition, we proved every closed cubic fermatean uncertainty soft ideal is a cubic fermatean uncertainty soft KU-algebra and every closed cubic fermatean uncertainty soft ideal is a cubic fermatean uncertainty soft ideal. Also, we discuss the closed cubic fermatean uncertainty ideal structures on fermatean uncertainty soft set. Finally, we prove that every closed cubic fermatean uncertainty soft ideal of a non-empty set is a cubic fermatean uncertainty soft ideal and converse part is not true with suitable example.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here