
Applications of Multi-Label Classification
Publication year - 2020
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.d1008.0394s220
Subject(s) - multi label classification , categorization , computer science , machine learning , artificial intelligence , contextual image classification , quality (philosophy) , object (grammar) , training set , data mining , pattern recognition (psychology) , image (mathematics) , philosophy , epistemology
The absence of labels and the bad quality of data is a prevailing challenge in numerous data mining and machine learning problems. The performance of a model is limited by available data samples with few labels for training. These problems are ultra-critical in multi-label classification, which usually needs clean data. Multi-label classification is a challenging research problem that emerges in several applications such as multi-object recognition, text categorization, music categorization and image classification. This paper presents a literature review on multi-label classification, various evaluation metrics used for analyzing performance and research hchallenges.