
Magnetic Properties of Somaloy 700 (5P) Material Under Round Magnetic Flux Loci
Author(s) -
Ashraf Rohanim Asari,
Youguang Guo,
Jianguo Zhu
Publication year - 2020
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.c9226.019320
Subject(s) - magnetic flux , magnetic field , core (optical fiber) , flux (metallurgy) , magnetic circuit , magnetic core , electrical engineering , electrical machinery , nuclear magnetic resonance , acoustics , physics , mechanics , materials science , mechanical engineering , electromagnetic coil , engineering , optics , quantum mechanics , metallurgy
Electrical machines has enabled human to do their chores with easier and more comfortable way. Most of the current electrical machines require the magnetic cores to operate at higher frequency to meet the demand of high–speed performance. The study of rotating core loss gives big significance to the rotating electrical machines since in real situation, the magnetic flux densities in the electrical machines are rotated during the operation. In this paper, magnetic properties of new material; SOMALOY 700 (5P) are studied by conducting 2-D core loss measurements at 50 Hz, 100 Hz, 500 Hz and 1000 Hz. Magnetic flux density is controlled to be in round shape in clockwise and anti-clockwise directions by using LabVIEW to resemble the actual core loss of rotating machines. B and corresponding H loci are plotted and these collected data are analysed by using Mathcad to obtain the core loss curves at different magnitude of magnetic field and frequencies. The findings show that the rotational core loss is increased with frequencies. At 1.8 T under 50 Hz of rotating magnetic fluxes, 8.9 Watt/ kg is recorded and keep increasing up to 2.4 T. The detail of core loss is important in providing information to the engineers for the motor design proposes.