z-logo
open-access-imgOpen Access
Assorted Sentiment Model for Publically Available Page of Facebook
Author(s) -
Saurabh Dhyani,
Ghanshyam Singh Thakur
Publication year - 2020
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.b7739.019320
Subject(s) - computer science , social network (sociolinguistics) , social media , artificial intelligence , sentiment analysis , extractor , naive bayes classifier , web page , language model , world wide web , engineering , process engineering , support vector machine
ecommerce industries expose public page in the social network site (Facebook, twitter etc) for the intention of improving of business strategy. They extract public mood about the social network page in the forms of total likes, the total share of the page and sentiment of all comments to the social network page similar way celebrities expose public page in the social network sites for the intention of improving its fame. We have developed an assorted model for publicly available page of Facebook. This assorted model is the combination of data extractor model, language convertor and cleaned model, and sentiment analyzer model. Our data extractor model extract comments on all the posts of publicly expose Facebook page in the less span of time. Language convertor and cleaned model would work for conversion of text written in different Indian language to the English language and after that English written text would be cleaned through cleaned model. Language convertor is made after implementing CILTEL model. CILTEL model converts comments written in the Indian languages in the English language. Cleaning model will clean all the comments of all the posts on the Facebook page. Finally, sentiment extraction model will extract sentiments of all the comments of the Facebook page. We have implemented classification using three machine learning algorithm, namely naïve bayes algorithm, perceptron algorithm and rocchio algorithm for checking the performance of our sentiment analysis model. Our assorted sentiment analysis model is beneficial to users like marketing industry, election parties and celebrities

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here