z-logo
open-access-imgOpen Access
Wireless Network Enhancement in the Arctic by Selection of Dielectric Materials of Rooms
Author(s) -
Alexey Lagunov*,
D. Fedin
Publication year - 2020
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.b7626.019320
Subject(s) - arctic , dielectric , wireless , mimo , computer science , telecommunications , wireless network , electrical engineering , electronic engineering , engineering , ecology , channel (broadcasting) , biology
The Arctic is of fundamental military-strategic importance for Russia. The development of the Arctic without an advanced telecommunication infrastructure is very difficult. To supply working in the Arctic employees with universal means of communication, it is the most efficient to use wireless communication band between 2.4 GHz and 5 GHz. Facilities, where radio telecommunication equipment in the Arctic works, have walls consisting of a multilayer structure. There is the problem of organizing communication of good quality. In such rooms, the best method is to use wireless networks using MIMO technology. We have developed a theory that allows us to determine the time Interflection T based on the determination of the dielectric constant of multilayer materials. In this case, problems arise in determining this coefficient. We propose to use the well-known method of short circuit and idling. We conducted a large number of measurements to determine the dielectric constant of various materials. We used this value to calculate the time T. In the future, we made adjustments to the premises by changing the size and amount of multilayer materials. Experimental results in the range from 2.4 GHz to 5 GHz showed that the data transfer rate increased by 5-10% when we performed the calculation of time Interflection and processed the room with multilayer materials. The proposed method is applicable indoors to build a wireless LAN standard IEEE 802.11 n.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here