
Mobile Application for Breast Cancer Diagnosis Using Morphological Associative Memories Implemented on a Cloud Platform
Author(s) -
Sergio Cerón-Figueroa
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.b6234.129219
Subject(s) - computer science , mobile cloud computing , cloud computing , associative property , classifier (uml) , artificial intelligence , mobile device , mobile computing , machine learning , distributed computing , embedded system , computer network , world wide web , operating system , mathematics , pure mathematics
The astounding advances that have been observed in mobile device technologies and their underlying algorithms have prompted a worldwide surge in attention to their capabilities and potential for improving different human activities. The present work is framed by the academic cooperation process between Mexico and Saudi Arabia; it consists of the description of the design and development of a mobile information system aimed at performing diagnosis and verification of breast cancer using an application for mobile devices. The problem to be solved is represented as a binary classification problem between healthy patients and people that have been confirmed as control cases. The classification algorithm is a hybrid model, consisting of Morphological Associative Memories and the k-Nearest Neighbor classifier. The hybrid model improves upon the performance of its components. The proposed model was implemented on a cloud computing platform in order to optimize the response time for the diagnosis. A comparative study of our proposal and the state of the art shows that the proposed mobile information system has a high classification performance as well as a low false positive rate.