z-logo
open-access-imgOpen Access
Machine Learning Paradigm towards Content Based Image Retrieval on High Resolution Satellite Images
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.b1104.1292s219
Subject(s) - artificial intelligence , computer science , boosting (machine learning) , support vector machine , machine learning , image retrieval , ensemble learning , pattern recognition (psychology) , weighting , precision and recall , curse of dimensionality , image (mathematics) , medicine , radiology
In the current era, content based image retrieval based on pattern recognition and classification using machine learning paradigm is an innovative way. In order to retrieve high resolution satellite images Support Vector Machine (SVM) a machine learning paradigm is helpful for learning process and for pattern recognition and classification; ensemble methods give better machine learning results. In this paper, SVM based on random subspace and boosting ensemble learning is proposed for very high resolution satellite image retrieval. The learned SVM ensemble model is used to identify the images that most similar informative for active learning. A bias-weighting system is developed to direct the ensemble model to pay more attention on the positive examples than the negative ones. The UCMerced land use satellite image dataset is used for experimental work. Accuracy and error rate are found to be precise. The tentative effects illustrate that the proposed model derived enhanced retrieval accurateness at the optimum level as well as significantly more effective than existing approaches. The proposed method can diminish the gap dimensionality and conquer the difficulty. The comparisons are evaluated by using precision and recall measurements. Comparative analysis observed that the retrieval time for a particular image have been reduced and the precision is increased. The primary aim of this paper is to represent the significance of ensemble learning with support vector machine in efficient retrieval of image.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here