
Influence of Chemical Treatment on Tensile and Flexural Properties of Sansevieria Cylindrica Polyester Composites
Author(s) -
C. Bennet,
N. Rajini,
J.T. Winowlin Jappes
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.b1077.1292s219
Subject(s) - ultimate tensile strength , flexural strength , materials science , composite material , silane , curing (chemistry) , compression molding , composite number , compressive strength , sodium hydroxide , mold , chemistry
The sansevieria cylindrica polyester composite slabs are made by compression molding technique using fibres treated with sodium hydroxide (NaOH), silane, calcium hydroxide (Ca(OH)2) and potassium permanganate (KMnO4) for optimum fibre length, optimum weight percentage and optimum curing temperature ( 40 mm, 40% wt, 600C) and their tensile properties have been studied. The inclusion of sansevieria cylindrica fibre as reinforcement into polyester matrix improves the flexural and tensile strength till a certain weight percentage, then it decreases drastically by further addition of fibre. The main problem in natural fibre is water uptake which damages the fibre and thereby the strength is reduced. To improve the performance, surface modification of fibres with various chemical treatments is performed and it enhanced the properties to a greater extent. Ca(OH)2 treated composites showed higher tensile strength whereas silane treated composites showed lower tensile strength. KMnO4 treated composites showed higher flexural strength whereas silane treated composites showed lower flexural strength.