
Integration of Healthcare domain Ontologies using Bayesian Networks
Author(s) -
G. T. Raju
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.b1028.1292s19
Subject(s) - computer science , correctness , bayesian network , domain (mathematical analysis) , machine learning , domain knowledge , artificial intelligence , feature selection , data integration , feature (linguistics) , knowledge sharing , data mining , information retrieval , knowledge management , algorithm , mathematical analysis , linguistics , philosophy , mathematics
Semantic Web (SW) was created with the vision of knowledge sharing. Knowledge from the past and present help predict the future with the use of Machine Learning (ML) algorithms. SW powered with ontologies help in realizing machine interactions supporting automated knowledge extraction. Healthcare as a field of medical domain gives lot of importance for timely accurate decisions with the available features. Representing existing information in terms of ontologies, retrieving the decisions upon establishing interaction between the relevant ontologies within the same domain, knowledge sharing & reusing the existing facts are of great benefit to the medical practitioners and researchers which has lot of open challenges to be resolved in order to realize the same. To address the stated issues, an algorithmic approach – Ontologies Integration algorithm using Bayesian Networks (OIBN) based on Bayesian Belief Networks (BBN) working on Naïve beliefs has been proposed which works on symptoms through the attributes of related ontologies within the same domain exploring the symptom dependencies and their probability of occurrences in combination. Selection of features for integration will follow the steps proposed in Sequential Forward Feature Selection algorithm (SFFS). The observation on the correctness of the presented method over diabetic datasets represented in ontological form with integration of relevant features reveals that the knowledge graphs have been efficiently explored discovering the facts based on the probability theory. The experimental results conclude that the proposed technique is showing enhanced prediction accuracy of 80.95% which is better compared to accuracies of the individual ontologies prior to integration and existing state-of-art technique.