
Medical Big Data Analytics Using Machine Learning Algorithms
Author(s) -
Usha Moorthy,
Usha Devi Gandhi
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.a5290.119119
Subject(s) - computer science , machine learning , analytics , predictive analytics , key (lock) , artificial intelligence , process (computing) , big data , data science , algorithm , data collection , data mining , computer security , operating system , statistics , mathematics
Artificial intelligence and expert systems plays a key role in modern medicine sciences for disease prediction, surveillance interventions, cost efficiency and better quality of life etc. With the arrival of new web-based data sources and systematic data collection through surveys and medical reporting, there is a need of the hour to develop effective recommendation systems which can support practitioners in better decision-making process. Machine Learning Algorithms (MLA) is a powerful tool which enables computers to learn from data. While many novel developed MLA constantly evolves, there is need to develop more systematic, robust algorithm which can interpret with highest possible accuracy, sensitivity and specificity. The study reviews previously published series on different algorithms their advantages and limitations which shall help make future recommendations for researchers and experts seeking to develop an effective algorithm for predicting the likelihood of various diseases.