z-logo
open-access-imgOpen Access
Effects of Combined Salt-Damage Resistant Agent on the Shrinkage, Chloride Penetration and Chemical Erosion of Mortar
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.a4857.119119
Subject(s) - shrinkage , sulfate , cracking , chlorine , mortar , chloride , materials science , penetration (warfare) , cement , composite material , chemistry , metallurgy , operations research , engineering
Reinforced concrete structures located on coastal landfill frequently adjoin sea-water environment, and are exposed to sea water and humid environment during construction. Particularly, in the case of large-scale structures like dams, their drying shrinkage is accompanied by fatal cracking, and thus chlorine ion penetration becomes easier. The present study develops a salt damage-resistant agent (SRA) to which aluminum salts, oligomer condensate, and amino alcohol derivatives with the alkyl group are applied as binding inducers. SRA performs the roles of reducing the drying shrinkage of cement composites, binding chlorine ions, and preventing erosion by sulfate ions. This study tests and evaluates its resistance to degradation factors that may occur to structures constructed on coastal landfill and so on. As a result of evaluating shrinkage cracking properties by performing the restrained shrinkage cracking test, SRC showed the shrinkage reduction compared with BSC. As for the performance of resistance to chlorine ion and the chemical sulfate erosion rate, SRC showed the highest resistance performance, followed by BSC and OPC, regardless of the concentration of aqueous solutions for immersion. In addition, as for the rate of mortar weight change by sulfate erosion, the SRA-intermixed SRC mixture showed a weight reduction rate at the level of 1/3 of BSC and 1/6 of OPC, respectively

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here