z-logo
open-access-imgOpen Access
Classification of Diabetic Retinopathy Features using Bag of Feature Model
Author(s) -
Anil Kumar K.R,
Noushira K.I,
K. Meenakshy
Publication year - 2019
Publication title -
international journal of innovative technology and exploring engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3075
DOI - 10.35940/ijitee.a4145.119119
Subject(s) - artificial intelligence , computer science , thresholding , preprocessor , diabetic retinopathy , feature extraction , feature (linguistics) , pattern recognition (psychology) , computer vision , machine learning , image (mathematics) , medicine , linguistics , philosophy , diabetes mellitus , endocrinology
Deep learning (DL) as well as feature learning by unsupervised methods have made tremendous consideration in the past decades because of its great and dynamic capacity to change input data into high level depictions by means of various machine learning (ML) methods and approaches. Therefore these interests have also showed a fast and steady growth in the arena of medical image analysis, especially in Diabetic Retinopathy (DR) classification. On contradiction, manual interpretation involves excessive processing time, large amount of expertise and work. Sternness of the DR is analyzed relative to the existence of Microaneurysms (MAs), Exudates (EXs) and Hemorrhages(HEs). Spotting of DR in its early stage is crucial and important to avoid blindness. This paper proposes an algorithm to build an automated system to extract the above mentioned DR features which are the elemental and initial signs of diabetic retinopathy. Initial step in this algorithm is preprocessing of the original image. The next step in this features extraction algorithms is elimination of optic disc (OD) and blood vessels which have similar characteristic with these features. Blood vessels are segmented using Multi-Level Adaptive Thresholding. OD is segmented using morphological operations. Feature extraction and classification is achieved by using deep Bag of Feature (BoF) model which uses Speeded Up Robust Features Our method achieved 100% acuuracy in DRIVE database and over 90% accuracy for e-OPTHA database. Thus, the proposed methodology represents a track towards precise and highly automated DR diagnosis on a large substantial scale along with better sensitivity and specificity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here